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The intent of modal analysis is to develop a reliable model of a structure by working with 
the analytical and experimental modal properties of frequency, damping and mode shape. In 
addition to identifymg these modal properties it would be desirable to determine spatially 
which parts of the structure are modelled poorly or well. This information could be used to 
improve the finite element model, or to point to faults in the structure and hence help to 
evaluate mechanical integrity. 

This paper shows how the pattern of discrepancies in the analytical and experimental test 
values for the pole and the driving point zero frequencies of a structure can be linked to 
discrepancies in the mass or stiffness of the structural elements. This localization technique 
requires only that mode frequency discrepancy data be measured. The more difficult to 
obtain mode shape data does not have to be measured, since it is adequate to use the less 
accurate mode shape data h m  a finite element model. 

The success of this procedure depends on the numerical conditioning of a modal 
reference matrix. Strategies to insure adequate numerical conditioning require a formulation 
which avoids geometric and energy storage symmetries of the structure, and ignores 
structural elements which contribute negligibly small potential or kinetic energy to the excited 
modes. Physical insight into the numrical conditioning problem is provided by a numerical 
example and by the localization of a mass discrepancy in a real structure based on laboratory 
tests. 



1. INTRODUCTION 

Obtaining a reliable dynamic model for a structue using the technique of modal analysis 
[ 11 involves the measurement of the modal parameters of mode shape and frequency, and the 
linking of these parameters to the modal data of an analytical model. While it is useful to 
refine the modal model by this technique, the answers to many important structural questions 
lie in the physical rather than the modal domain. 
Modal model refmement involves warking with the discrepancies between experimental 

modal data and the corresponding data from the analytical model. The technique of 
localization makes it possible to link discrepancies in the frequencies and mode shapes of a 
structure to discrepancies in the mass or stiffness parameters of the structure. Starting with a 
pattern of discrepancies in frequency and mode shape in the modal domain, it is possible to 
locate spatially, in the physical domain, which structural elements have been modelled poorly 
or well. 

It is also possible, by forming a frequency discrepancy vector which compares 
experimental frequencies measured at two separate times, to detexmine which structural 
elements may have been damaged in that interval. Beyond being useful for model 
verification, localization can improve the accuracy of answers to such physical domain 
questions as stress, fatigue, operational red lines, and mechanical integrity evaluation. 

frequency and mode shape discrepancies. [2,3] An earlier paper [4] has shown that it is 
sufficient to rely on the analytical mode shape data from a finite element program, even if 
such data lacks accuracy, since fmt order errors in mode shape cause only second order 
e m  in the localization procedure. It is only necessary to measure the frequency 
discrepancies, a greatly simplified task, with imprtant practical benefits when the testing has 
to be done in a difficult environment such as on-orbit. In [4] this frequency discrepancy 
based localization procedure has been demonstrated analytically for a simple four element 
beam. This report looks more critically at this localization technique, and develops a strategy 
which assures success with more complicated structuxes. 

Experience with frequency discrepancy based localization has shown that it is necessary, 
in a practical application, to control errors in the finite element analysis and in the 
experimental data, and to deal with the problem of numerical conditioning. This report 
focuses primarily with the strategy for dealing with numerical conditioning. In addition, 
examples of the f m e r  two erro~ sources, the analytical and experimental, axe included, 
based on some experiments with a real structure that were conducted at the University of 
Lowell [5]. 

Localization techniques typically require experimental and analytical infomation on both 

2. FREQUENCY BASED LOCALEATION PROCEDURE 

We review briefly the frequency based localization procedure. More details are given in 
Ref [4]. The link between frequency discrepancies and structural element discrepancies is 
based on an energy method which starts with the Rayleigh Quotient for a particular mode: 



02=V/r  

where V = vj is the sum of the potential energies of the mode 
stored in the elements of the structure, and 

o 2  T = o 2  x tj is the s u m  of element kinetic energies of the mode 

Next, cast this equation in differential form using logarithmic differentiation: 

The quantities o, V, and T for the mode can be detexmined from the analytical model, 
henceforth assumed to be a finite element model. The frequency differential d o  is equal to 
the smal l  difference between the finite element frequency and the experimental frequency of 
the particular mode in question, or the small difference between two experimental values 
mken at two different times. By suitable approximations [4], the equation can be cast in the 
form: 

wherc kj is a stiffness scale factor (modulus), and mj is a mass scale factor associated with 
element j. 

Equation (3) is a linear equation which relates the mode frequency discrepancy mtio d a h  
to the stiffness and mass discrepancy ratios for each of the elements. The weighting factors 
vj/V and YI' for each element a~ based on the mode shapes from the finite element analysis. 
More equations of the form of equation (3) can be generated by considering additional 
modes, either pole modes or driving point zero modes. When assembled into matrix form, 
the equations take the form of equation (4). The coefficients of, say, p equations, form a 
(p x n) modal reference matrix which relates the (n x 1) structural discrepancy vector to the 
(p x 1) frequency discrepancy vector. Solving for the dependent structural discrepancy 
vector proceeds directly, provided the modal reference matrix is well conditioned. If p > n, 
the solution involves the use of the pseudo inverse of the modal reference maaix. 
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3. NUMERICAL CONDITIONING OF THE MODAL REFERENCE MATRIX 

(4) 

Success with the localization procedure depends on the numerical conditioning of the 
modal reference matrix. A standard indicator of the numerical conditioning of a matrix is the 
condition number, Cn, [6] which is the ratio of the highest to the lowest eigenvalue of the 
matrix. This number varies over the range 1 5 Cn 5 QO, the larger the value the poorer the 
numerical conditioning. In developing a strategy for frequency discrepancy based 
localization, the condition number is of limited use because it only serves to confirm what is 
already known. To see this, we point out first that the elements of the modal reference matrix 
are determined by the choice of the structural elements whose discrepancies are of interest. 
Some structural element choices lead to poor localization results, and have large condition 
numbers, while other element choices lead to good localization results, and have lower 
condition numbers. The monitoring of the condition number serves only to confirm that 
numerical conditioning is of crucial importance to localization. The condition number itself 
gives no insight into the question of which structural elements will be good choices. 

Two criteria have been adopted which pmvide a strategy for selecting good structural 
elemnts for the localization procedure. Mathematically, both criteria have to do with the 
column space of the modal reference matrix. These criteria will be described separately 
below, along with the physical insights which complement the mathematical reasoning 
behind the criteria. 

3.1 CRITERIO N 1: COLUMNVECI'ORORTHOGONAIXI'Y 

Putting aside the condition number as a constructive indicator of good choices for 
structural discrepancies, we turn to the column space vectors of the modal reference matrix. 
For equation (4) to be solved successfully it is necessary that these vectors be independent, 
that is, that no two (or mare) vectors be parallel to each other. The numerical conditioning of 
the modal reference matrix deteriorates as the vectors become closer to being parallel. Thus, 
the strategy for good numerical conditioning reduces to a search for a set of column vectors 
which are as orthogonal to each other as possible. 

From a physical viewpoint, an important cause for two column vectors of the modal 
reference matrix to be nearly parallel is symmetry - both geometric and energy storage 
symmetry. A simple example of geometric symmetry is a &-free uniform beam. The 
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column vector which repsents the pattern of pole frequency changes caused by a mass 
change at the left hand beam tip will be identical to the vector which represents pole 
frequency changes which correspond to mass changes at the right hand beam tip. 

pole frequency changes caused by a change in stiffness at, say, the center element, is nearly 
the same, except for a negative sign, as the frequency change pattern caused by a mass 
change to the same element. In this case, computations have shown that the energy storage 
symmetry is strong, the vectors are nearly parallel, and the modal matrix is nearly singular. 
A second energy storage symmetry example is not so obvious: direct calculation has shown 
that the pattern of pole frequency changes caused by a stiffness change to the root of a 
cantilever beam is identical, except for a negative sign, to the pattern of pole frequency 
changes induced by a mass change at the tip of the cantilever. 

Symmetry, then, of both geometric and energy storage kinds, gives rise to poor 
numerical conditioning, and success with localization requires that the amount of symmetry 
be limited Fortunately, the above examples, while they lend themselves to simple intuitive 
insights into the effects of symmetry on numerical conditioning, are not likely to be met in 
practice. Real engineering structures typically lack such strong symmetry, and the modal 
reference matrix is comspondingly less likely to suffer from poor numerical conditioning. 

The inclusion of zero frequencies along with the pole frequencies reduces the level of 
symmetry. The mode shape which corresponds to a driving point zero is identical to the pole 
mode shape of the structure with a new boundary condition where the driving point is futed. 
The symmetry of even a symmetrical strucm is thereby reduced by the unsymmetric 
boundary condition. Further, whatever symmetry exists with the added zero mode boundary 
condition is different from the symmetry imposed by the original pole mode boundary 
conditions. When both d i s s ida r  symmetries of the pole and the zero modes are combined 
in the modal reference matfix data base, the overall symmetry of the formulation is reduced. 

The free-free beam also provides an example of energy storage symmetry. The pattern of 

3.2 NUMERICAL EXAMPLE: TIP EXCITED ASYMMETRIC BEAM 

We pass now to a specific numerical example to help set the general ideas discussed 
above. Consider the structure in Fig. l(a): a free-free beam of 15 macro elements driven by 
a force at the right hand end. The perfect mass symmetry of the beam has been reduced by a 
concentration of mass at macro elements 5 and 6. The structural discrepancy coordinates for 
equation (4) are shown in Fig. l(b): 1-15 for the dk/k I s ,  and 16-30 for the dm/m 's. 

(Figure l(a) about here) 

(Figure l(b) about here) 



Indicated also in this figure is the fact that the elements of the modal reference matrix are 
computed from a more detailed finite element model which has 5 micro elements for every 
macro element. 

The symmetry of the structure, and, therefore, the numerical conditioning of the 
formulation, is most easily understood by studying the orthogonality matrix for the column 
vectors of the modal reference matrix, shown in Fig. 2. Each element in this matrix 
represents the square of the normalized dot product of two vectors in the modal reference 
matrix. Such a matrix is symmetric about its main diagonal so only the upper triangular 
matrix is shown. Two vectors are parallel when their squared nomalized dot product is 
unity. They are orthogonal when this product is zero. To focus attention on vectors which 
are weakly orthogonal, only products which are 2 0.6 are shown. 

(Figure 2 about here) 

A key to the orthogonality matrix which identifies the various types of symmetry in this 
particular example is shown in Fig. 3. Elements of the orthogonality matrix which are near 
unity correspond to column vectors in the modal reference matrix which are nearly parallel. 
For this example these nearly parallel vectors can be explained by the geometric or the energy 
storage symmetries which show up as bands in Fig. 3. 

(Figutre 3 about here) 

This beam example, even with the addition of some concentrated mass at macro elements 
5 and 6, sti l l  shows considerable symmetry. The stiffness symmetry, represented by the 
near unity elements in the k geometric symmetry band of the kk sub matrix, is quite strong 
even though the driving point zero frequencies have been included in the fornulation (Had 
they not, the k geometric symmetry band would have been unity.). The mass symmetry, 
judged by the sparse and smaller sized entries in the m geometric band of the mm sub matrix, 
is less severe. The numerical conditioning of the modal reference matrix based on the dm/m 
discrepancies of all the 15 macro elements of the beam is fairly good (condition number Cn = 
39), good enough for a numerically simulated mass change of 20% to element 1 to be easily 
discerned (Note that this 20% change to a single macro element repsents a change of only 
1.3% to the mass of the beam as a whole.). The results of this computation, using the 
patterns of frequency change of the first eight poles and the first seven zeros, are shown in 
Fig. 4. 

(Figure 4 about here) 



3.3 C-L * COLUMN SUMS 

The second strategy for selecting structural elements makes use of what is called "column 
sums". A column vector of the modal refexence matrix indicates the percent changes in pole 
or zero frequencies that result from changing a particular dk/k or W m  of the structure. If 
the column sum, that is, the s u m  of the magnitudes of the elements of a particular column 
vector, is small compared with the column sums of other vectors, then changes affecting the 
mass or stiffness of the particular structural element will have a comparatively smal l  effect on 
frequency changes. For instance, the column s u m  of the vector which represents the effect 
of stiffness changes to the tip element of a cantilever beam will be small compared to the 
column sum which corresponds to a stiffness change of the root element. 

depends on the bandwidth of the pole or zero frequencies chosen for the localization 
procedure. If new pole or zero frequencies are introduced, the significance of a column sum 
may change. For the example of the cantilever beam, the column sum which corresponds to 
the tip element will grow larger as the bandwidth of the poles and zeros increases, since at 
high frequencies even the tip of the beam begins to flex. It makes sense, then, to choose 
candidate poles and zeros from the bandwidth that will receive excitation in an actual 
situation. 

A structural element which has a negligibly small column sum need not be assessed at all 
because that element will not be significantly excited in pctice. From a numerical viewpoint 
it is probably not wise to include an element with a negligible column s u m  because the 
resulting structural discrepancy estimate is likely to be contaminated by noise. Conversely, if 
it is deemed important to assess a particular structural element, then the s t r u m  must be 
excited over an adequate bandwidth so that substantial potential energy (for a stiffness 
discrepancy assessment) or kinetic energy (for a mass discrepancy assessment) is generated 
in the structure. 

column s u m  of 0.18 associated with the first column of the modal reference matrix - that is, 
the vector which gives the pattern of frequency changes caused by changes in the dk/k 
stiffness ratio of the left hand tip of the beam - is small compared to all the other column 
sums. It is therefore not advisable to include the dk/k of the left hand tip of the beam 

Whether the column sum corresponding to a particular structural element is small or not 

The column sums for the 15 element free-free beam example are shown in Fig 5. The 

(Figure 5 about here) 

as one of the dependent variables. Note that the column sum of 0.37 at the right hand end of 
the beam is not as negligible as the left hand value. This is because the driving point, and 
therefore the driving point zeros, are at the right hand end of the beam. The structure near the 
node at the right hand end is mre heavily flexed, and stiffness changes to macro element 15 
affect the zero frequencies more than stiffness changes to macro element 1 at the left hand end 



of the beam, where the beam flexes little. 

3.4 EXPERIMENTAL EXAMPLE: TIP LOADD SYMMETIUC BEAM 

Tests on a uniform, symmetrical free-free beam were made at the University of Lowell. [5] 
This beam and the test set up were identical to that shown in Figs. l(a) and l(b) except that 
the asymmetrical mass was not added to macro elements 5 and 6. In one experiment both 
pole and driving point zero frequencies were measured on the uniform beam. The beam was 
then modified by physically adding a 20% mass change to macro element 1 (left hand tip of 
the beam). Again the new pole and zero frequencies were measured. The frequency 
discrepancies determined by these two tests are shown in Fig. 6. 

(Figure 6 about here) 

To apply the localization procedure a frequency discrepancy vector was formed from the 
measured pole and zero discrepancies shown in Fig. 6. Because the beam was so 
symmetrical it was difficult to choose suitable discrepancy elements on the beam that 
provided an adequately independent set of column vectors for the modal reference matrix. 
One nearly successful set of beam discrepancy elements consisted of dk/k coordinates 
2,3,5,7,9, and dm/m coordinates 16, 19, 21,23,25,26,27,28, and 30. Note that because 
of the strong symmetry of the uniform beam it was not possible to include discrepancies for 
all 15 macro elements (discrepancy of macro element 14 is missing) 

discrepancy vector, with the results shown in Fig. 7. The success of this localization shows 
two important results: first, that it is possible to keep the experimental e m r  low enough for 
the procedure to work, even though the numerical conditioning is rather poor (Cn = 122), 
and second, that it is possible to find a set of sufficiently independent column vectors for the 
modal reference matrix, even though the beam has very strong symmetry. As mentioned 
above, this second result is made possible only because driving point zeros were included in 
the localization procedure. 

The frequency discrepancy localization procedure was applied to this measured 

(Figure 7 about here) 

In contrast, the same localization of the beam was attempted using an estimated frequency 
discrepancy vector based on the uniform, unflawed beam poles and zeros obtained from the 
finite element model. The estimated frequency discrepancies are shown in Fig. 8. When 

(Figures 8 and 9 about here) 



compared with the measufed frequency discrepancies (Fig. 6), these estimated frequency 
discrepancies show some systematic error. The resulting localization (Fig. 9), for the same 
choice of macro element discrepancies as before, is unsuccessful. Note that the W m  
discrepancy for the flawed macro element mass is large and has the wrong sign, also the 
large number of spurious discrepancies at the other unflawed elements. 

The breakdown of the localization procedure reveals that the procedure is sensitive to 
errors in the frequency discrepancy vector - in this case the noise introduced by the fact that 
the finite element model did not predict frequencies close enough to the real test data. For 
this example, the sensitivity is extreme: finite element modelling errors of the order of 1 % 
cause the localization to break down. The important point is that this extreme sensitivity has 
to do with the poor numerical conditioning. 

Both examples (Figs. 7,9) have the same marginal numerical conditioning (same Cn = 
122). The localization of Fig. 7 is successful in spite of the poor conditioning because the 
input vector e m  is so small. This is not so for the localization shown in Fig. 9 where the 
substantial e m  introduced by the noisy input vector is amplified by the poor numerical 
conditioning. The localization shown in Fig. 9 can be improved by improving the numerical 
conditioning. Removing discrepancy coordinate 2 (dk/k of macro element 2) from the 
formulation, reduces the Cn from 122 to only 22. The resulting localization, shown in 
Fig.10, is notably improved even though the error in the input vector still exists. 

(Figure 10 about here) 

The localization of Fig. 10 deserves further comment. First, the 20% mass flaw at macro 
element 1 , which physically exists on the test beam, has been localized successfully both in 
sign and in magnitude. The next highest discrepancy, a +15% discrepancy in the mass of 
macro element 15, must be attributed to an error in the finite element model. This is a 
plausible modelling error: although the finite element model of this test beam properly 
accounted for the translational mass of the accelerometer and the load cell at the right hand 
end of the beam (Fig. l), it neglected to include the rotational inertia of these two 
transducers. So although the input vector contains significant error, the dominant results of 
the localization still yield useful information on structural changes and finite element 
modelling errors. 

success: 
In summary, there are three aspects of the localization procedm which are necessary for 

structural element discrepancies which actually exist, either physically or 
analytically, must be provided for in the formulation, i.e. included in the output 
(structure element discrepancy) vector. 
input (frequency discrepancy) vector noise must be kept low 
output vector elements must be chosen insure good numerical conditioning 



4. APPLICATIONS 

The success of the frequency based localization procedure described above suggests two 
applications: (a) structural integrity monitoring, and (b) misassembly detection. 

Structural integrity monitoring. Starting with a modal reference matrix which is based 
on a finite element model, a baseline measurement of pole and driving point zero frequencies 
of the real structure is made. Next, a subsequent structural integrity monitoring test is made, 
and a frequency discrepancy vector formed. Finally, a localization is performed to see if 
there are any structural changes. 

For smctural integrity monitoring it may be acceptable to assume that mass discrepancies 
are zero and that it is only necessary to monitor dk/k changes which would result from 
structural flaws. By ruling out dm/m changes the number of frequencies to be measured is 
reduced by a factor of two. 

Misassembly detection. This application of localization follows the structural integrity 
monitoring procedm, but with one significant difference. The baseline frequency 
measurements are replaced by estimates from a realistic finite element model. 

5. CONCLUSION 

The results of this study indicate that the first application of localization, structural 
integrity monitoring, is practical and feasible at its present level of development. Frequency 
based localization is particularly well suited for onarbit applications where mode shape 
information is more difficult to obtain than in an earth laboratory. The present work suggests 
that the second application of localization, misassembly detection, is promising, but that it 
places high demands on the accuracy of the finite element model. 
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